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Abstract—Multi-Armed Bandit (MAB) that solves the sequen-
tial decision-making to the prior-unknown settings has been
extensively studied and adopted in various applications such
as online recommendation, transmission rate allocation, etc.
Although some recent work has investigated the multi-agent MAB
model, they supposed that agents share their bandit information
based on social networks but neglected the incentives and arm-
pulling budget for heterogeneous agents. In this paper, we
propose a transaction-based multi-agent MAB framework, where
agents can trade their bandit experience with each other to
improve their total individual rewards. Agents not only face the
dilemma between exploitation and exploration, but also decide to
post a suitable price for their bandit experience. Meanwhile, as
a buyer, the agent accepts another agent whose experience will
help her the most, according to the posted price and her risk-
tolerance level. The key challenge lies in that the arm-pulling and
experience-trading decisions affect each other. To this end, we
design the transaction-based upper confidence bound to estimate
the prior-unknown rewards of arms, based on which the agents
pull arms or trade their experience. We prove the regret bound of
the proposed algorithm for each independent agent and conduct
extensive experiments to verify the performance of our solution.

Index Terms—Multi-agent multi-armed bandits, upper confi-
dence bound, experience transaction, posted pricing mechanism.

I. INTRODUCTION

Recently, the Multi-Armed Bandit (MAB) model has been
extensively studied due to its wide range of applications, e.g.,
online recommendation [1], transmission rate allocation [2],
crowdsourcing user selection [3], etc. In the basic MAB model,
the learning agent (a.k.a. player or decision-maker) can pull
one arm in each round and obtain the i.i.d. (independent and
identically distributed) random rewards. The objective of the
agent is to maximize the total cumulative rewards within a
finite time horizon. The learning agent has to face the dilemma
between exploitation and exploration in the MAB model. The
exploitation means that the agent prefers to pull the arm that
had the best performance in the past, while the exploration
indicates that the agent will also try some other arms so as
to find the potentially optimal arm which will generate the
highest rewards in the future. Much effort has been devoted to
the basic MAB problem, and some famous algorithms such as
Upper Confidence Bound (UCB) [4, 5], epoch-based UCB [6],
Thompson sampling [7], etc., have been proposed.

Moreover, lots of research has considered various extensions
to the basic MAB model, e.g., the combinatorial concept [8, 9],
fairness [10], delayed arm-pulling feedback [11], contextual
bandits [12], long-term returns [13], etc. Particularly, a vari-
ant of the basic MAB problem, called multi-agent MAB
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Fig. 1. The experience transaction in the TMA2B framework.

model [14, 15], has been recently put forward. Many practical
application scenarios such as the multi-user multi-channel
selection problem [2, 16] can be modeled as a multi-agent
MAB setting. In the multi-agent MAB model, multiple agents
face the same instance of a multi-armed bandit problem and
study how to maximize the total aggregate rewards. In general,
there are two common settings in the multi-agent MAB model:
competition [17, 18] and collaboration [19, 20]. The difference
is when multiple agents pull the same arm, each agent will
obtain discounted or no rewards in the former setting, while
she will receive independent rewards in the latter setting.

Although some existing work has studied the multi-agent
MAB model, that work was built on the premise that each
agent will share their bandit experience via the social networks
that already exist by default [15, 20–22]. On the one hand, we
argue that social-network-based communication cannot totally
stimulate agents to share their MAB information. One agent is
considered to only communicate with her network neighbors,
which might result in two agents with similar or redundant
arm-pulling experiences communicating with each other. At
the same time, one agent is required to share her experience
with all of her network neighbors rather than selectively
communicating. These will not only waste agents’ commu-
nication resources but also may not improve their learning
performance. On the other hand, the existing work neglects
the incentive and arm-pulling budget for heterogeneous agents.
They consider that pulling arms is cost-free, which is not
practical. Also, the agent who contributes more valuable bandit
information should be given more extra rewards so that all
agents have incentives to exchange bandit messages, but this
significant setting is ignored in the current work.

To this end, we propose a transaction-based multi-agent
MAB (called TMA2B) model in the collaboration setting, in
which heterogeneous agents can trade their bandit experience
to others or directly pull arms. The term “heterogeneous”
means that each agent can enter the TMA2B model at different



moments and has different budgets, risk-tolerance levels, etc.
Agents with different risk-tolerance levels (e.g., risk-tolerant or
risk-averse) will adopt different experience-trading strategies.
The TMA2B model consists of arm-pulling and experience-
trading rounds, in which a given parameter controls the trading
frequency. In the arm-pulling rounds, each agent considers
how to combine the bought experience from others into their
individual arm-pulling decisions to balance exploitation and
exploration. In the experience-trading rounds, each agent can
simultaneously act as a seller and buyer. Since the generated
rewards of each arm are i.i.d. over time, the arm-pulling
decisions for agents are generally different. It is difficult
for seller agents to post reasonable prices for their bandit
experience in the past arm-pulling rounds. As a buyer, an
agent can only observe each seller’s number of times of pulling
each arm in a period and her posted price, as shown in Fig.
1. Each buyer agent with different risk-tolerance levels and
local empirical information will have different valuations on
every seller’s bandit experience so that she will make different
trading decisions. It is challenging for buyer agents to select
the most appropriate seller to complete the transaction.

For each agent, we combine her bought bandit experience
in the past trading rounds with her local empirical information
and thus devise a transaction-based UCB (called T-UCB)
index for the prior unknown arms. Each agent will pull the
arm with the highest ratio of the T-UCB-based index and
the corresponding cost in the arm-pulling rounds. In the
experience-trading rounds, we model the seller agents’ pricing
problem as an MAB problem, where each candidate price is
seen as a normal arm. For each buyer, we first evaluate the
expected confidence interval increase for any one arm based
on one seller’s published information. Then, each buyer agent
will determine the seller to trade with according to her risk-
tolerance level and local empirical information.

The contributions of this paper are summarized as follows:
1) We propose a novel transaction-based multi-agent MAB

framework, in which each heterogeneous agent can pull
arms directly or trade her bandit experience with others
to improve learning performance. The arm-pulling and
experience-trading decisions influence each other. To the
best of our knowledge, we are the first to consider the
experience transaction in the multi-agent MAB setting.

2) We re-define the total number of potential arm-pulling
opportunities each agent faces by considering this
agent’s bought bandit experience. We then devise the
transaction-based UCB (i.e., T-UCB) for the prior un-
known arms to solve the dilemma between exploitation
and exploration. Each agent will independently pull arms
according to their T-UCB-based index and the arm-
pulling cost.

3) We design each agent’s selling and buying strategy
in the experience-trading rounds. We adopt the UCB
idea to solve seller agents’ posted pricing problem.
We propose an efficient method to calculate the buyer
agent’s expected incremental rewards and determine the
most appropriate seller by considering the buyer’s risk-

tolerance level and the seller’s posted price.
4) We prove the regret bound of the proposed algorithm

on each independent agent, showing that one tradeoff
exists between the arm-pulling and experience-trading
decisions. We conduct extensive experiments to verify
the performance of TMA2B, where agents in TMA2B
can obtain higher rewards when compared with the
classical algorithms (i.e., fractional KUBE and ϵ-first).

The remainder of the paper is organized as follows. We
present the TMA2B model and the solution in Section II and
Section III, respectively. Next, we evaluate the performance of
the proposed solution in Section IV. After reviewing related
work in Section V, we conclude this paper in Section VI.

II. PRELIMINARIES

A. TMA2B Model

In the transaction-based multi-agent multi-armed bandit
(TMA2B) model, all agents face the same instance of a
multi-armed stochastic bandit problem and each agent’s ob-
jective is to maximize her own total rewards under a given
unique budget. We follow the traditional setting that the arm-
pulling process is time-slotted. Let t denote the t-th round. In
this TMA2B model, we consider that the agents’ experience
trading actions only happen in certain rounds. Thus, the
slotted rounds are divided into two types: arm-pulling rounds
and experience-trading rounds. We let ω denote the trading
frequency, that is, the agents can trade their bandit experience
in the rounds t=k ·(ω+1) for k≥1. In the rounds t ̸=k ·(ω+1),
every agent can individually pull one arm from the whole set
of arms. We consider a collaboration/cooperation setting [19–
21] in which the agents will obtain the independent rewards
when they select the same arm.

We use A= {1, 2, · · · , A} to denote the set of A arms in
the TMA2B setting. Since the rewards of arms are i.i.d. over
time and are agent-independent, we let ra (a∈A) denote the
a-th arm’s expected reward. The value of ra is not observed
by any agents, so these agents need to learn the unknown
parameters while maximizing their total rewards under the
budget constraint. In the round t, if the arm a is pulled by
one agent, the reward obtained by the agent is denoted as rta.
Here, we have E[rta]t≥1=ra which indicates that {rta|t ≥ 1}
is i.i.d. with an unknown expectation ra. At the same time,
pulling one arm will certainly consume some of the budget
resources. Let ca denote the cost of pulling the arm a∈A.

Moreover, we use N ={1, 2, · · · , N} to denote the set of N
independent agents. Each agent i∈N has a unique budget and
we let Bi denote this budget. In the experience-trading rounds,
each agent i can sell her bandit experience of the past ω
rounds. We consider the posted pricing mechanism and use the
set Pi={pi,1, · · · , pi,L} to denote L discrete price values of
agent i where pi,1< · · · <pi,L. We define the maximum posted
price as pmax=maxi∈N {pi,L} and have pmax<mina∈A ca.
Otherwise, the agents have no incentive to buy others’ bandit
experience. On the one hand, each agent can sell their bandit
experience to gain extra revenue. On the other hand, one agent
can also improve her confidence intervals in the prior-unknown



rewards of arms by buying others’ experience, although this
process will consume some of the budget.

According to the existing work [6, 7], we observe that one
agent’s confidence interval in any one arm will undoubtedly
improve with the increase of the number of times this arm is
pulled. When facing the arm with a higher observed average
reward but a worse confidence interval, each agent with
different characteristics (i.e., risk-tolerant or risk-averse) will
have different choices. We here use φi ∈ [0, 1] (for i ∈ N )
to denote the agent i’s risk-tolerance level. The larger φi, the
higher the risks i can take. The parameter φi plays a decisive
role in the experience-trading process for each agent. An agent
will exit the TMA2B framework when she exhausts her budget.

B. Problem Formalization

In the TMA2B model, each agent can accumulate her
achieved revenues by two methods: 1) pulling one arm under
some budget consumption in one round, and 2) trading her
bandit experience of the past ω rounds. In the former case, the
agent has to face the dilemma between exploitation and explo-
ration in the traditional MAB problem [6]. Note that an agent
can improve her confidence intervals in the prior-unknown
reward distribution by buying others’ bandit experience. In
the latter case, an agent intending to sell her bandit experience
needs to decide on the posted price so that she can maximize
her extra rewards. For simplicity of following description, the
revenue achieved in pulling arms will be called “arm-pulling
rewards”, while the revenue from trading the bandit experience
will be called “experience-trading rewards”.

We first introduce the computation of the arm-pulling re-
wards. For the arm-pulling rounds t≥1 and t ̸=k · (ω+1), we
let πt

i,a =1 denote that the arm a∈A is pulled by the agent
i, and πt

i,a = 0 otherwise. Consider that the agent i will use
her part of budget for pulling arms. Let B1

i (≤Bi) denote this
part, and we have:∑

t≥1 & t ̸=k·(ω+1)

∑
a∈A

πt
i,a · ca ≤ B1

i .

In the experience-trading rounds, i.e., t=k ·(ω+1) for k≥1,
each agent can sell her bandit experience to gain extra rewards
or buy others’ experience to improve the learning performance.
Without loss of generality, we use s ∈ N and i ∈ N to
denote one seller agent and one buyer agent, respectively. Note
that each agent can act as a seller and buyer in one round
simultaneously. Any one agent s can sell her bandit experience
of the past ω rounds. At the beginning of the trading round t,
the agent s first publishes the number of times each arm was
selected in the past ω rounds, and meanwhile determines her
posted price pts,l ∈Ps. In the next section, we will introduce
how to post the suitable price so that each distributed agent
can maximize her total experience-trading rewards.

After one seller posts her price, each buyer agent will
determine whether to accept this seller’s price. If so, the buyer
will pay the seller pts,l and get the further information, i.e.,
this seller’s empirical rewards for each arm in the past ω
rounds. We use γs,i(p

t
s,l)=1 to denote the indicator that the

buyer i will accept the price pts,l posted by the seller s in

the trading round t, and γs,i(p
t
s,l) = 0 otherwise. Based on

this, we can determine the total number of buyers that accept
the price posted by agent s, that is,

∑
i∈N γs,i(p

t
s,l). Further,

we can calculate the rewards from trading experience in this
round, i.e., pts,l ·

∑
i∈N γs,i(p

t
s,l). Next, we compute the total

experience-trading rewards in the trading rounds, denoted as
R̃s, that is,

R̃s =
∑

t=k·(ω+1)

(
pts,l ·

∑
i∈N

γs,i(p
t
s,l)

)
,

where k≥1 and pts,l∈Ps. If an agent does not pull any arms
in the past ω rounds, she cannot act as a seller. However, since
TMA2B supports the asynchronous start for agents, the agent
who just enters the TMA2B framework can buy others’ bandit
experience to complete her local initialization. The trading
action terminates when the agent exits the TMA2B model, i.e.,
her budget Bi exhausts. At the same time, we also calculate
a buyer agent’s total cost of buying bandit experience from
others (denoted as B2

i ), i.e.,

B2
i =

∑
t=k·(ω+1)

∑
s∈N

γs,i(p
t
s,l) · pts,l.

We let Ri(B
1
i ) denote the total arm-pulling rewards under

the budget B1
i and have

Ri(B
1
i ) =

∑
t≥1 & t ̸=k·(ω+1)

∑
a∈A

πt
i,a · rta.

The objective of each agent is to maximize the total
expected rewards under the given budget by independently
pulling arms and trading her periodical bandit experience.
Note that the arm-pulling and experience-trading stages are not
mutually independent, because other agents’ bandit experience
will help the agent better pull the arms with high rewards. In
the TMA2B model, each agent (e.g., i) has the same goal, and
we formalize the optimization problem as follows:

Maximize : R̃i +Ri(B
1
i ) (1)

Subject to : B1
i +B2

i ≤ Bi (2)∑
a∈A πt

i,a = 1 (3)∑
s∈N γs,i(p

t
s,l)≤1 (4)

γs,i(p
t
s,l), π

t
i,a∈{0, 1}, pts,l∈Ps (5)

Eq. (2) means that the sum of arm-pulling cost and the
cost of buying bandit experience from others cannot exceed
the agent’s given budget; Eq. (3) indicates that each agent can
only pull one arm in each round; Eq. (4) shows that each buyer
agent can select at most one seller to trade with in one round.

In the TMA2B model, the arm-pulling process and the
experience-trading process are mutually influenced. When
one agent consumes more budget during the aspect of her
independent arm-pulling, she might miss others’ valuable but
cheap bandit experience. In other words, she must put more
effort into the tradeoff between exploitation and exploration
in the traditional MAB problem. When one agent allocates
more budget to the trading process, she will undoubtedly
decrease the budget allocated to the arm-pulling process. The
advantage is that the agent can observe others’ experience,



thus increasing the probability of selecting the optimal arms in
the arm-pulling process. The following section will introduce
how to make optimal decisions for each independent agent.
Additionally, we present the commonly-used notations of this
paper in Table I.

III. SOLUTION TO TMA2B
A. Arm-pulling Stage

Since all independent and rational agents face the same
instance of A-armed stochastic bandit settings, without loss of
generality, we let i denote any one agent. In any round t, we
adopt the idea of upper confidence bound (UCB) to determine
the selected arm. Unlike the traditional MAB problem, where
the agent can only depend on her local empirical arm-pulling
information, in the TMA2B model, one agent can expend little
cost to obtain others’ bandit experience as her prior knowledge
before round t. In any experience-trading round t, when the
agents trade successfully, i.e., γs,i(pts,l)=1, we let R⋆

s,a(t) and
n⋆
s,a(t) denote the total rewards and the total number of times

of selecting the arm a∈A by the seller s in the past ω rounds.
Now, by combining the arm-pulling empirical information and
the experience-trading data, we can calculate the number of
times each arm is pulled and deduce the average rewards until
the round t, from the perspective of each independent agent i.

We let ri,a(t) and ni,a(t) denote the average rewards and
the total number of times of selecting the arm a∈A. ni,a(t)
and ri,a(t) are updated as follows:

ni,a(t) =
∑

τ=k·(ω+1)

∑
s∈N

γs,i(p
τ
s,l) · n⋆

s,a(τ) +

t−1∑
τ=1

πτ
i,a, (6)

ri,a(t)=

others’ bandit experience︷ ︸︸ ︷∑
τ=k·(ω+1)

∑
s∈N

γs,i(p
τ
s,l) ·R⋆

s,a(τ)+

arm-pulling reward︷ ︸︸ ︷
t−1∑
τ=1

πτ
i,a · rτa

ni,a(t)
(7)

where k=1, 2, · · · , ⌊ t
ω+1⌋.

At the beginning of the round t, we can get the average
empirical rewards of each arm over the last t− 1 rounds
from each agent i’s perspective. At the end of this round
t, the average rewards will update as ri,a(t + 1). In the
TMA2B model, we combine one agent’s local arm-pulling
information and her bought bandit experience from others to
design the transaction-based UCB (called T-UCB) to the prior-
unknown rewards of arms. We first calculate the total number
of potential opportunities for i to face the arm a (including
other agents’ pulling opportunities) until the round t as:

Ti,a(t) = t+ ω ·
∑

τ=k·(ω+1)

∑
s∈N

γs,i(p
τ
s,l)− ⌊ t

ω + 1
⌋, (8)

in which k=1, 2, · · · , ⌊ t
ω+1⌋.

In Eq. (8), the second term means the total number of rounds
in which other agents have the opportunities to select the arm
a according to the historical experience-trading results. The
third term indicates that agents are not allowed to pull arms
in the experience-trading rounds. We then define the T-UCB

TABLE I
DESCRIPTION OF MAJOR NOTATIONS.

Variable Description
N , A the sets of agents and arms, respectively.
i, a, t the indexes for agents, arms, and rounds (slots).
ca the cost of pulling the arm a∈A.
Bi the limited budget of the agent i∈N .
φi the agent i’s level of risk-tolerance.
Pi the set of posted price for i, Pi={pi,1, · · · , pi,L}.
ω the agents’ experience-trading frequency.
rta the observed rewards of the arm a in round t.
ra the expected reward of a, i.e., E[rta]=ra.
πt
i,a πt

i,a∈{0, 1} is the agent i’s pulling decision.
ri,a(t) the average arm-pulling reward until round t.
ni,a(t) the total times a is pulled (observed by i).
Ti,a(t) the total number of opportunities of i facing a.
r̂i,a(t) the agent i’s T-UCB-based index until round t.
Ri(B

1
i ) i’s total arm-pulling rewards under the budget B1

i .
R̃i the agent i’s total experience-trading rewards.
γs,i(p

t
s,l) the trading decision indicator between s and i.

n⋆
s,a(t) the number of times a is pulled by s in past ω rounds.

R⋆
s,a(t) the total rewards of s pulling a in past ω rounds.

∇a
s,i i’s expected incremental confidence on a based on s.

vas,i i’s expected risk-tolerant incremental reward for a.

based index for each arm a ∈A from the perspective of the
agent i∈N until the round t, denoted as r̂i,a(t), i.e.,

r̂i,a(t) = ri,a(t) +

√
α·ln(Ti,a(t))

ni,a(t)
, (9)

where α is a given parameter. Here, the T-UCB expression
has combined an agent’s own arm-pulling information and her
bought bandit experience from others.

Each agent independently makes the arm-pulling decision
in each round based on her obtained bandit information
(including others’ and her own). In the arm-pulling round t≥1
and t ̸= k · (ω+1), each agent will select the arm with the
highest ratio of the T-UCB-based index and the corresponding
cost. Unlike the traditional MAB settings where the agent
needs to initialize by pulling every arm once, the proposed
TMA2B framework allows agents to trade other agents’ bandit
experience to complete the initialization.

B. Experience-trading Stage

In the TMA2B model, the distributed agents can share their
bandit experience in the past ω rounds. Each rational agent
will ask for some payment as their rewards, so the agents
in the trading rounds are divided into two kinds: buyer and
seller. We adopt the posted pricing strategy in the trading
process. At the beginning of the experience-trading round t,
each seller s ∈ N first publishes her posted price and the
number of times each arm was selected in the past ω rounds,
denoted as pts,l ∈ Ps and n⋆

s,a(t) in which 1 ≤ l ≤ L and
a ∈ A. After observing the displayed information of the seller
s, other agents will determine whether to accept this seller’s
posted price according to their local information already on
hand. Each agent can simultaneously be a buyer and seller, so
multiple options exist for every buyer.

We first introduce the experience-trading decisions from
the perspective of a buyer. Despite adopting the same T-



UCB-based arm-pulling strategy, each agent will still make
different arm-pulling decisions in the past ω rounds. This is
because each arm will generate the i.i.d. random rewards when
selected by an agent in one round. In other words, each agent
has different confidence intervals for each arm. When facing
multiple sellers’ bandit experience, one buyer will compute
her expected incremental confidence intervals for each arm.
At the beginning of the trading round t= k(ω+1), a buyer
has the following local information: the number of times each
arm is selected until t (including the experience bought in the
past), i.e., ni,a(t), and the agent i’s average rewards combining
the experience-trading information and her own arm-pulling
rewards, i.e., ri,a(t).

Recall the T-UCB expression in Eq. (9). With the increase of
the number of times each arm is pulled by agents, i.e., ni,a(t),
the degree of confidence that average empirical reward ri,a(t)
approaches the expected reward ra will certainly increase.
Until the round t, we let Λt

i,a denote the obtained information
of the agent i about the arm a, including her local empirical
arm-pulling values and the bought experience. Specifically,
Λt
i,a consists of three parts: ri,a(t), Ti,a(t) and ni,a(t). Now,

for each buyer i∈N , she knows each seller’s information (e.g.,
s ∈ N ) including the posted price pts,l ∈ Ps and the number
of times each arm was selected in the past ω rounds, i.e.,
n⋆
s,a(t), and her local information Λt

i,a. Before the successful
trade between sellers and buyers, each buyer has no knowledge
about the average rewards R⋆

s,a(t)/n
⋆
s,a(t), so we let ri,a(t) be

the estimate of it at first. When given the information n⋆
s,a(t)

of the seller s in the past ω rounds, we first compute the buyer
i’s incremental confidence intervals for the arm a∈A, denoted
as ∇a

s,i, as follows:

∇a
s,i =

√
α ln(Ti,a(t))

ni,a(t)
−

√
α ln(Ti,a(t) + ω)

ni,a(t) + n⋆
s,a(t)

. (10)

Recall that each agent i has different levels of risk-tolerance
φi. This indicates that the agent cares about the expected
incremental confidence intervals and is also concerned with the
average empirical rewards. Thus, we propose a new evaluation
metric, denoted as vas,i, to capture the intrinsic property about
the agent i’s expected risk-tolerant incremental reward, i.e.,

vas,i = ri,a(t)
(1−φi) ·max{∇a

s,i, 0}φi . (11)

Note that the value of ∇a
s,i may be less than 0. In such a

case, we replace ∇a
s,i with 0 in Eq. (11). Now, the buyer

i ∈ N will accept the posted price of the seller s† who
will increase the total incremental rewards for all arms under
her risk-tolerant level most quickly. The winning seller s† is
determined as follows:

s† = argmaxs∈N

(∑
a∈A vas,i
pts,l

· I
{∑

a∈A
∇a

s,i ≥ θ
})

, (12)

where I{true} = 1 while I{false} = 0, and θ is a given
threshold. The second term in Eq. (12) considers the extreme
scenario where one agent has high enough degrees of confi-
dence in all arms, such that others’ experience cannot improve
her confidence intervals for any arms, i.e.,

∑
a∈A ∇a

s,i < θ.
In such a case, the agent is unwilling to buy others’ bandit

Algorithm 1 Multi-agent Self-determining Bandit Strategy
Require: N , A, ca for ∀a∈A, Bi φi for ∀i∈N , ω, θ, α
Ensure: {πt

i,a, γ
t
s,i, p

t
s,l,∀i, s∈N ,∀a∈A, 1≤ l≤L,∀t≥1}

1: Initialization: B0
i = Bi for i∈N ;

2: for t = 1, 2, · · · , do
3: if t = k · (ω + 1) for k ≥ 1 then
4: s∈N acts as a seller agent (calling Alg. 2):

pts,l = SA(α,Ps, βs,l(t), us,l(t));
5: i∈N acts as a buyer agent (calling Alg. 3):

γs,i(p
t
s,l) = BA(α, θ, φi,Λi,a(t), n

⋆
s,a(t), p

t
s,l);

% Here, Λi,a(t) = ⟨Ti,a(t), ni,a(t), ri,a(t)⟩.%
6: Each seller s∈N calculates her extra revenues ut

s,l

and updates βs,l(t), us,l(t), and ûs,l(t);
7: Each buyer i∈N updates several parameters: ni,a(t),

Ti,a(t), ri,a(t), and Bt
i =Bt−1

i −
∑

s∈N pts,l·γs,i(pts,l);
8: else
9: i∈N makes arm-pulling decision (calling Alg. 4):

πt
i,a = AAP(α,Λi,a(t), ca);

10: Each agent, e.g., i, updates ni,a(t), Ti,a(t), ri,a(t),
and the remaining budget Bt

i =Bt−1
i −

∑
a∈A πt

i,a ·ca;
11: end if
12: if Bt

i < mina∈A ca then
13: The agent i exits the TMA2B framework;
14: end if
15: end for
16: Output: {πt

i,a, γ
t
s,i, p

t
s,l,∀i, s∈N ,∀a∈A} for ∀t≥1

experience but only pulls arms by using the remaining budget.
After the buyer i selects the agent s†, she will pay s† the value
of pts†,l and further obtain the seller’s empirical rewards, i.e.,
R⋆

s†,a(t) for a ∈ A. Afterwards, the buyer will update her
obtained information at hand, i.e., the values of ri,a(t), Ti,a(t),
ni,a(t), and r̂i,a(t).

Here, we use a simple example to discover the inner idea of
the seller selection process from one buyer’s perspective. We
consider 2 arms and 2 seller agents, and let {⟨20, 5⟩, 0.5} and
{⟨5, 20⟩, 0.5} denote these two sellers’ information. ⟨20, 5⟩
means the number of times of pulling each arm, while 0.5
denotes the posted price. Suppose that the buyer’s numbers of
times of pulling these two arms are n1 = 20 and n2 = 100,
and the average empirical rewards are r1=0.8 and r2=0.3,
respectively. Based on this, we conduct the calculation ac-
cording to Eqs. (11) and (12), and find that the buyer prefers
the first seller regardless of her level of risk-tolerance, i.e.,∑

a∈A vas1,i >
∑

a∈A vas2,i for ∀φi ∈ (0, 1). Now, we set
r2 = 0.5 and keep other values unchanged. We find when
0 < φi < 0.19, we have

∑
a∈A vas2,i >

∑
a∈A vas1,i; when

0.19<φi≤1, we get the opposite conclusion. This change re-
flects the intrinsic nature of the proposed computation method.
When the average empirical rewards for one specific arm
are high, but the confidence interval is bad, the agent with
a high risk-tolerance level may prefer the seller whose arm-
pulling experience can improve the confidence interval for this
arm. Thus, the proposed computation method can capture the



Algorithm 2 SA: One Seller Agent’s Decision
Require: α, Ps, βs,l(t), and us,l(t)
Ensure: pts,l ∈ Ps

1: if ⌊ t
ω+1⌋ > L then

2: Calculate pts,l = argmaxps,l∈Ps
ûs,l(t) in Eq. (13);

3: else
4: Randomly select one not-posted price, e.g., pts,l∈Ps;
5: Initialize the values of βs,l(t) and us,l(t);
6: end if
7: Output: pts,l

Algorithm 3 BA: One Buyer Agent’s Decision
Require: Λi,a(t), α, θ, φi, n⋆

s,a(t), p
t
s,l for ∀s∈N , a∈A

Ensure: γs,i(p
t
s,l)

1: for s ∈ N do
2: Compute the incremental confidence interval for a ∈ A

given n⋆
s,a(t) and Λi,a(t), i.e., ∇a

s,i in Eq. (10);
3: Calculate the expected incremental reward for a by

considering the risk-tolerant level, i.e., vas,i in Eq. (11);
4: end for
5: Determine the posted price, i.e., pts†,l in Eq. (12);
6: Output: γs†,i(pts†,l)=1 and γs,i(p

t
s,l)=0 for s ̸=s†

intrinsic characteristics of heterogeneous agents.
On the other hand, we present the experience-trading deci-

sion from the perspective of a seller agent, i.e., how to post
one suitable price to maximize each seller’s payoff over time.
We model this process as a trivial MAB problem, where the
posted price is regarded as one arm. In any trading round
t=k · (ω+1) for k≥1, each seller s∈N will select the posted
price according to the empirical experience-trading rewards
and the number of posted price being selected until t. More
specifically, each seller s will try all posted price values once
in the first L trading rounds, so that pts,l∈Ps where |Ps|=L
can be initialized once. In each trading round t= k · (ω+1),
we compute the revenue of seller s as follows:

ut
s,l = pts,l ·

∑
i∈N

γs,i(p
t
s,l); for 1 ≤ l ≤ L.

Here, we let us,l(t) and βs,l(t) denote the average revenues
from s posting the l-th price in the trading round t and the
total number of times of posting this price until t. When pts,l
is selected, these two values are updated as follows:

βs,l(t) = βs,l(t−(ω+1)) + 1,

us,l(t)=
us,l(t−(ω+1)) · βs,l(t−(ω+1))+ut

s,l

βs,l(t)
.

We then design the UCB-based index of s posting the price
pts,l, denoted as ûs,l(t), i.e.,

ûs,l(t) = us,l(t) +
√
α ln(⌊t/(ω + 1)⌋)/βs,l(t). (13)

Here, α is the same parameter defined in the T-UCB
expression. When the price pts,l is not posted in the trading
round t, these two values βs,l(t) and us,l(t) stay the same as in
the last experience-trading rounds, i.e., βs,l(t)=βs,l(t−(ω+1))

Algorithm 4 AAP: One Agent’s Arm-Pulling Decision
Require: α, Λi,a(t)=⟨Ti,a(t), ni,a(t), ri,a(t)⟩, ca for ∀a∈A
Ensure: πt

i,a

1: for a ∈ A do
2: Calculate the T-UCB based index r̂i,a(t) in Eq.(9);
3: end for
4: Select the arm with the highest ratio of the T-UCB-based

index and the cost, i.e., a† = argmaxa∈Ar̂i,a(t)/ca;
5: Output: πt

i,a† =1 and πt
i,a=0 for a ̸=a†

and us,l(t) = us,l(t− (ω + 1)). At the beginning of each
experience-trading round t=k ·(ω+1), each seller agent s∈N
posts her price according to the value of ûs,l(t−(ω+1)).
C. Detailed Algorithms

Now, we present the solution to TMA2B in detail. We
first display the distributed multi-agent self-determining bandit
decisions (including the arm-pulling and experience-trading
decisions) in Alg. 1. In each experience-trading round t =
k(ω+1) for k ≥ 1, each agent can act as a seller and buyer
simultaneously. When one agent intends to sell her bandit
experience of the past ω rounds, the seller’s decision procedure
(i.e., Alg. 2) will be called as shown in Step 4. In Alg. 2, if all
price candidates have been tried, the procedure will output the
posted price with the highest UCB-based index in Eq. (13).
Otherwise, Alg. 2 will output any one price value in Ps that
has not been posted before.

On the other hand, when an agent wants to buy some bandit
experience from others, the buyer’s decision procedure (i.e.,
Alg. 3) will work, as shown in Step 5. More specifically,
each buyer first calculates the expected incremental confidence
intervals for each arm in Eq. (10), based on which it computes
the expected incremental reward for each arm by considering
this buyer’s risk-tolerant level in Eq. (11). At last, she deter-
mines the seller according to the criterion in Eq. (12). Note that
only the indicator for the selected seller will become 1. After
the trading process is completed, each agent i will update her
local information at hand, including ni,a(t), Ti,a(t), ri,a(t),
Bt

i , βi,l(t), ui,l(t), and ûi,l(t).
In each arm-pulling round, each heterogeneous agent will

independently pull one arm according to the output of Alg.
4. More precisely, each agent determines the arm with the
maximum ratio of the T-UCB-based index and the correspond-
ing cost. After all agents pull their selected arms, several
parameters such as ni,a(t), Ti,a(t), ri,a(t), and Bt

i will update
accordingly. Every agent will check their remaining budget at
the end of each round. When the remaining budget is less than
a threshold (i.e., the minimum arm-pulling cost), the agent will
leave the TMA2B framework. The whole process terminates
when all agents exhaust their budgets. Note that TMA2B
supports the asynchronous start, in which each heterogeneous
agent needs to maintain a local slotted round index.

D. Theoretical Analysis
We first simplify some notations to better analyze the regret

bound of each distributed agent with a given budget. We



omit i in Bi, ni,a(t), ri,a(t), and r̂i,a(t). We also define
some notations as follows: a∗= argmaxa∈A

ra
ca

(i.e., a∗ is the
optimal arm), ∆min=mina̸=a∗( ra∗

ca∗ −
ra
ca
), cmin=mina∈A ca,

cmax = maxa∈A ca, xa = ca − ca∗ , ya = ra∗ − ra, and
pmin = mini∈N pi,1 (i.e., the minimum posted price of all
agents). Note that the values of xa and ya may be negative
here. Moreover, we let B1 and B2 (B = B1 + B2) denote
the budgets for pulling arms and buying others’ experience,
respectively. B1 and B2 will affect the specific arm pulled by
the agent in one round and the total number of arm-pulling
rounds, respectively. Let T (B1) denote the total arm-pulling
rounds under the budget B1.

We divide the regret analysis into three steps, same as [5, 6,
23]: 1) bounding the expected number of pulls of sub-optimal
arms under the rounds T (B1), denoted as E[na(T (B1))] for
a ̸= a∗; 2) linking the regret and the total expected arm-
pulling rounds under the given budget (denoted as E[T (B1)]);
3) deriving the worst regret bound, denoted as R(B). Note that
the regret analysis in the TMA2B model is more complicated
because the experience transactions strongly affect the arm-
pulling decisions in each round and decrease the expected total
arm-pulling rounds. When analyzing the bound of E[na(t))]
for t ≤ T (B1), we let t′ = t + δ (and n′

a = na + δ′) denote
the total observed number of arm-pulling rounds (and the
total observed number of times of pulling a), where δ and
δ′ indicate the total arm-pulling rounds and the total number
of times of pulling a observed from the bought experience.
Recall that t and na are the agent’s local round index and the
local number of times of pulling a. According to this, we have
the following lemma.

Lemma 1: The expected number of times of pulling a under
the local rounds T (B1), i.e., E[na(T (B1))], is bounded as:

E[na(T (B1))] ≤
4α ln(B1/cmin +B2ω/pmin)

(∆mincmin)2
+ 1 +

π2

3
.

Proof: We first define At, which indicates the arm pulled
in the t-th arm-pulling round. Then, we have E[na(T (B1))]=

1+
∑T (B1)

t=A+1 I{At = a} where I{true}= 1. Further, we have
the following results:

E[na(T (B1))]≤µ+
∑T (B1)

t=A+1
I{At=a, na(t)≥µ}

≤µ+

T (B1)∑
t′=1

t′−1∑
n′
a∗

t′−1∑
n′
a

{ra∗(t′)+wt′,n′
a∗

ca∗
≤

ra(t
′)+wt′,n′

a

ca

}
, (14)

where we let wt,n=
√

α ln t
n for simplicity and t′=

∑
a∈A n′

a

indicates the total number of arm-pulling rounds, including
the agent’s local information and bought bandit experience
from others. According to the existing work [5, 6, 23], we
find that at least of three following cases must hold: ra∗(t′)≤
ra∗−wt′,n′

a∗ , ra(t′)≥ ra+wt′,n′
a
, and ra∗

ca∗ <
ra+2wt′,n′

a

ca
. The

probability of the first two cases being true is less than 2(t′)−4

based on the Chernoff-Hoeffding bound [5, 6, 24].
However, the probability of the third case being false is

different from the existing work. This is because an agent’s
arm-pulling decisions may be affected by others’ bandit expe-

rience. When we set µ≥ 4α ln(t+δ)
(∆mincmin)2

− δ′, we conclude that
the third case is false, that is,

ra∗

ca∗
− ra

ca
−

2wt′,n′
a

ca
≥ ra∗

ca∗
− ra

ca
−

2wt′,n′
a

cmin

≥∆min − 2

cmin

√
α ln t′

n′
a

≥∆min − 2

cmin

√
α ln t′

µ+ δ′
≥ 0.

Due to δ′≥0, t≤B1/cmin, and δ≤ωB2/pmin, we continue
Eq. (14) and get

E[na(T (B1))]≤
4α ln(B1/cmin+B2ω/pmin)

(∆mincmin)2
+1+

π2

3
. (15)

Lemma 1 holds. □
Next, we analyze the relationship between the total number

of arm-pulling rounds and the budget. Based on [5], we have

E[T (B1)]≥
B1

ca∗
− 4α

(∆mincmin)2

∑
xa>0

xa

ca∗
ln(

B1

cmin
)

−
∑

xa>0

xa

ca∗
(1 + π2/3)− 1. (16)

We omit the detailed proof process here due to the space
limit. At last, we analyze the worst regret bound.

Theorem 1: The regret of our algorithm in TMA2B under
the budget B (i.e., R(B)) is constrained by

R(B) ≤
( 4α

(∆mincmin)2

∑
xa>0

xa

ca∗
ln(

B1

cmin
)

+
∑

xa>0

xa

ca∗
(1+

π2

3
) + 1 +

B2

ca∗

)
ra∗

+
∑

ya>0
ya

(4α ln(B1/cmin +B2ω/pmin)

(∆mincmin)2
+ 1 +

π2

3

)
.

Proof: According to the definition of regret (i.e., the total
reward gap between the optimal solution and ours), we derive
the worst regret bound as follows:

R(B) =
Bra∗

ca∗
−
∑T (B1)

t=1
rta

≤ Bra∗

ca∗
− T (B1)ra∗ + T (B1)ra∗ −

∑T (B1)

t=1
rta

≤
(B1+B2

ca∗
−T (B1)

)
ra∗+

T (B1)∑
t=1

(
ra∗−

∑
a∈A

raI{At=a}
)

≤
(B1

ca∗
−T (B1)+

B2

ca∗

)
ra∗+

∑
ya>0

yaE[na(T (B1))]. (17)

Now, by substituting the results of Eq. (15) and Eq. (16)
into Eq. (17), we complete the proof of Theorem 1. □

This regret bound is consistent with our observations. Due
to the fact B=B1+B2, when we put a larger proportion of the
budget on the arm-pulling process (i.e., increase B1 but de-
crease B2), the total number of arm-pulling rounds increases.
Otherwise, the total number of pulling arms will reduce. Still,
the agent will select the optimal arm in each round with a
higher probability. This is because trading others’ experience
more will undoubtedly improve the confidence intervals for
each prior unknown arm. Thus, a tradeoff exists between
the arm-pulling and experience-trading stages. Additionally,
the given regret bound in Theorem 1 does not consider the
experience-trading rewards. Actually, the regret bound of our



algorithm involving the trading revenues will be tighter.

IV. EXPERIMENT

A. Experiment Settings

We compare our solution with several famous algorithms,
called Optimal, fractional KUBE [5, 6] (frac-KUBE for short),
and ϵ-first [25]. We first introduce the Optimal algorithm,
which means each agent knows the expected reward of each
arm (i.e., ra for a ∈ A) in advance. In such a case, each
agent will always pull the same arm a∗ in each round, that
is, a∗ = argmaxa∈A

ra
ca

. Note that in each round, the reward
obtained by the agent, denoted as rta∗ , will follow the Gaus-
sian distribution with the expectation ra∗ . The frac-KUBE
algorithm indicates that each agent will independently adopt
the density-ordered greedy strategy based on the traditional
UCB index to determine the arm in each round. After the
agent initializes several parameters by pulling all arms once,
she will pull the arm in each round according to the ratio of
the UCB values and the cost. The ϵ-first algorithm stipulates
that each agent i will use a part of the budget, i.e., ϵ · Bi,
to explore the prior unknown rewards of arms, i.e., randomly
pulling arms. Then, she will always pull the arm which has
the best performance in the exploring stages, i.e., the highest
ratio of the average empirical reward and the cost. Here, we
find that when ϵ=0.01 and ϵ=0.1, the ϵ-first algorithm has
relatively good performance.

Next, we introduce some detailed experiment settings. We
first generate the expected reward ra for each arm a ∈ A
according to the uniform distribution from the range [3, 7].
We also create the cost of each arm ca from the range [1, 2].
To generate the value of rta, we use the Gaussian distribution
with the expectation ra. Here, we generate the variance of the
Gaussian distribution for a∈A from the range (0, 5]. Then, we
produce the posted price for sellers, considering that all agents
have the same posted price set for simplicity. Here, we let
L=5 and PL=cmin · {0.1, 0.2, 0.3, 0.4, 0.5} in which cmin=
argmina∈Aca. We generate each agent’s budget from the range
[103, 105] and let Bi = 2 ∗ 103 in default. Moreover, we set
α= 2 in the experiments based on the existing work [5, 6].
We generate the numbers of agents and arms, i.e., N and A,
from the range [20, 140], and let N=20 as well as A=40 in
default. At last, we let the transaction frequency ω be selected
from the range [19, 89].

B. Experiment Results
Now, we present the experiment results. We first evaluate the

total achieved rewards for each agent with the change in her
budget. When we increase the budget from 103 to 104, we see
that our algorithm outperforms the ϵ-first algorithm on average
and almost catches up with the Optimal algorithm, as shown in
Fig. 2. We analyze that the rewards achieved by our algorithm
are about 32% higher than that of the ϵ-first algorithm. Also,
along with the increase in the agent’s budget, the total revenues
of all algorithms increase accordingly. These experimental
results are consistent with our theoretical analysis. We then
evaluate the impact of the number of agents (i.e., N ) in the
TMA2B framework, as shown in Fig. 3. We observe that our
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Fig. 2. Total Rewards vs. Budget.

proposed algorithms still beat the ϵ-first algorithm and almost
keep up with the Optimal algorithm. These observations verify
the effectiveness of the proposed solution. Moreover, we
evaluate the performance of all algorithms by changing the
number of arms (i.e., A) and display the experiment results
in Fig. 4. With the increase in the number of arms, the total
rewards achieved by these several algorithms have an upward
trend. This is because more arms mean more choices for
each agent. The probability of pulling the arm with higher
rewards will increase. The total rewards from our algorithm
fall between the Optimal and frac-KUBE algorithms. The
average rewards of the Optimal algorithm and our solutions
are 12499 and 11889 in this setting. On the other hand, we
present the reward performance when we change the trading
frequency ω, as shown in Fig. 5. The total rewards obtained
by our algorithm are still higher than those of frac-KUBE and
ϵ-first. These experimental results are in line with expectations.

Next, for any one arm across different rounds, we compare
the T-UCB values in our algorithm and the UCB values in the
frac-KUBE algorithm, as shown in Fig. 6. We let the yellow
line denote the expected reward (i.e., 6.5) of any one arm in the
TMA2B framework. At the same time, we let the red and blue
lines denote the T-UCB values in Eq. (9) and the trivial UCB
values, respectively. We also display generated rewards for
each round using the gray dots based on the expectation 6.5 in
the graph. We observe that T-UCB can approach the expected
reward value more quickly than UCB at the beginning of the
MAB process. Moreover, the T-UCB values can estimate the
prior unknown reward of this arm more accurately than UCB
in the end. The T-UCB and UCB values are getting closer to
the expected reward with the increase in rounds. In addition,
we present the total experience-trading revenues and payments
for the agents in Fig. 7. We observe that for some agents,
the revenue from selling their local experience is higher than
the payment used to buy others’ experience in the trading
rounds. We also display the changes in the trading revenue and
payment for one given agent across different trading rounds in
Fig. 8. In some rounds, several buyers may accept this agent’s
posted price, while in other rounds, no buyer will accept it.
These results remain consistent with our theoretical analysis.

V. RELATED WORK

So far, lots of research has studied Multi-Armed Bandit
(MAB) problems, including the MAB applications and the
variants of traditional MAB. We first review the MAB ap-
plications in various fields. [26] proposed the multi-agent
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MAB-based solution to the table orthogonal allocation in
ad-hoc networks. [27] adopted the online multi-agent MAB
model to solve the decentralized delay-sensitive task offloading
problem in edge computing scenarios. [28] studied the cache
placement problem in the mobile edge computing field and
designed a multi-agent MAB solution. [29] studied the beam
tracking problem in millimeter-wave systems and developed
the adaptive Thompson sampling solution. Next, we review
the MAB-related algorithms. [19] studied the distributed MAB
model with heterogeneous agents, in which each agent’s goal
is to find her optimal local arm among a local subset of all
arms, while [30] aimed at finding the optimal global arm.
[31] investigated the optimal arm identification problem in
the stochastic MAB model and proposed a reward-cost ratio
based solution. The work [8, 10] studied a special MAB model
with the fairness and sleeping arm constraints, where fairness
means the number of pulling each arm should not be less than
a given threshold, and sleeping arms indicate that some arms
cannot be pulled in a round. The work [1, 32] investigated
the combinatorial MAB models where multiple arms can be
simultaneously pulled in each round and the agent’s goal is to
maximize the total rewards.

Some existing MAB work has considered multi-agent MAB
scenarios. For example, the work [21, 33] studied how multiple
agents cooperate with their immediate neighbors to solve a
linear bandit-optimization problem. [34] considered that each
agent can exchange messages through a underlying network
in two cases where the communication graph is known or un-
known. [22] studied the impact of cooperation and communi-
cation on the regret and communication cost in the distributed
multi-agent MAB model. The work [15, 35] studied a special
multi-agent MAB problem aiming to maximize all agents’
total rewards and devised the distributed learning algorithms.
Similarly, the work [11, 20] considered communication delays
in the multi-agent MAB problem, while [14] combined the

UCB idea with a message-delivering protocol to propose a
decentralized algorithm. Different from these studies on the
MAB models and applications, we investigate the transaction-
based multi-agent MAB model in which these learning agents
can trade their bandit experience with each other.

On the other hand, some literature has studied data valuation
and pricing problems. Among them, [36, 37] considered data
uncertainty, economic robustness, and the concept of entropy
in the models, and proposed the online data valuation and
pricing mechanisms; [38] supposed that each buyer has a time-
sensitive valuation on the items, which follows an unknown
distribution, and a seller has a limited supply; [39] investigated
the VM placement and pricing problem in the load-unbalanced
edge computing scenario and proposed an auction-based solu-
tion; [40] studied the online crowdsensing task pricing prob-
lem in which each worker arrives dynamically. In this paper,
we adopt the easily-implemented posted pricing mechanism to
evaluate the bandit experience for each distributed agent. We
focus on how each agent determines the seller agent to trade
with by considering her incremental confidence intervals and
her level of risk tolerance.

VI. CONCLUSION

In this paper, we study a transaction-based multi-agent
MAB (TMA2B) model where not only can each agent pull an
arm independently in a round, but also each agent can trade
their bandit experience. The challenges lie in how to design
efficient arm-pulling and experience-trading strategies. For
each independent agent, we combine her individually-observed
rewards and her bought bandit experience, based on which
we devise a tailor-made transaction-based upper confidence
bound (T-UCB) to denote the prior-unknown rewards of arms.
Each agent pulls the arms or trades her bandit experience
according to the T-UCB values and the corresponding cost.
We analyze the regret bound of our algorithm, indicating that a
tradeoff exists between the arm-pulling and experience-trading



stages. Finally, we conduct lots of experiments to verify the
effectiveness of the proposed solution.
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